Equivalence of diagonal matrices over local rings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagonal Matrix Reduction over Refinement Rings

  Abstract: A ring R is called a refinement ring if the monoid of finitely generated projective R- modules is refinement.  Let R be a commutative refinement ring and M, N, be two finitely generated projective R-nodules, then M~N  if and only if Mm ~Nm for all maximal ideal m of  R. A rectangular matrix A over R admits diagonal reduction if there exit invertible matrices p and Q such that PAQ is...

متن کامل

On Algebraic Shift Equivalence of Matrices over Polynomial Rings

The paper studies algebraic shift equivalence of matrices over n-variable polynomial rings over a principal ideal domain D(n ≤ 2). It is proved that in the case n = 1, every non-nilpotent matrix over D[x] is algebraically strong shift equivalent to a nonsingular matrix. In the case n = 2, an example of non-nilpotent matrix over R[x, y, z] = R[x][y, z], which can not be algebraically shift equiv...

متن کامل

Factorial Rings and Diagonal Reduction of Matrices

The class of Bézout factorial rings is introduced and characterized. Using the factorial properties of such a ring R, and given a n×m matrix A over R, we find P ∈ GL(n, R) and Q ∈ GL(m, R) such that PAQ is diagonal with every element in the diagonal dividing the following one. Key-words: Ring, Bézout, principal, factorization, reduction of matrices.

متن کامل

On nest modules of matrices over division rings

Let $ m , n in mathbb{N}$, $D$ be a division ring, and $M_{m times n}(D)$ denote the bimodule of all $m times n$ matrices with entries from $D$. First, we characterize one-sided submodules of $M_{m times n}(D)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $D$. Next, we introduce the notion of a nest module of matrices with entries from $D$. We ...

متن کامل

Diagonal Similarity and Equivalence for Matrices

the cyclic products of matrices and diagonal similarity. In this paper we consider diagonal similarity for matrices, which may be infinite, and whose elements lie in a (possible non-commutative) group G with O. Let H be a subgroup of a group G and let A be an irreducible square matrix with entries in GO. In Theorem 3.4, we give necessary and sufficient conditions for the existence of a matrix B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2008

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2008.04.008